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A Volume-Surface Integral Equation Method for

Solving Maxwell’s Equations in Electrically

Inhc)mogeneous Media Using Tetrahedral Grids
Jacek Nadobny, Peter Wust, Martin Seebass, Peter Deuflhard, and Roland Felix

Abstract— Starting with the solution of Maxwell’s equations

based on the volume integral equation (VIE) method, the transi-
tion to a volume-surface integrai equation (VSIE) formulation

is described. For the VSIE method, a generalized calculation
method is developed to help us directly determine E tields at
any interface combination in three-dimensional (3-D) electrically
inhomogeneous media. The VSIE implementation described here

is based on separating the domain of interest into dkcrete parts

using nonuniform tetrahedral grids. Interfaces are described
using curved or plane triangles. Applying linear nodal elements,

a general 3-D formulation is developed for handling scatter field

contributions in the immediate vicinity of grid nodes, and this
formulation is applicable to all multiregion junctions. The special

case of a smooth interface around a grid node is given naturally

by this formulation. Grid nodes are split into pairs of points for
E-field calculation, and node normals are assigned to these points.
The pairs of pointa are assigned to the elements adjoining the

grid node. For each pair of points, the correct field jumps on
the interface are given by a surface integral over the polarization
surface charge (density.

IIISCRETIZATION NOMENCLATURE

As a guide to the reader we have summarized the symbols

and definitions used below.

Q Grid point/grid node: point, where N

surface elements r@) (i = 1, ..., IV)

meet and subdivide 2 or more subre-

gions .sI, Cz, ~. . (Figs. 4 and 5).
r(i) Gurved triangular surface element i

(Figs. 3 and 4).
A(i) Plane triangular surface grid element z

approximating I’(i) (Figs. 3 and 6).
~(~) Unit nodal normal on I’(i) “at” Q (sep-

aration from Q infinitesimal) defined in

(14) (Figs. 3 and 4).
~(i) Projection of I’(;)/A(i) on the tangen-

tial plane 1 n(i) (Figs. 6 and 7).

V6(Q) Spherical neighborhood surrounding Q

with radius S (Figs. 4 and 5).

r(i) Vb(Q) fl I’(i) (Figs. 3-5).6
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(Fig. 5).

Reference point generated by splitting

off the grid node Q, associated with

1’$) (Fig. 5).

Pair of reference points for E-field

calculation generated by splitting off

P(;) (Fig. 5).

Used to indicate the integral contribu-

tion of T or T to P~l-.

I. INTRODUCTION

T HE recent fast-paced development of computer technol-

ogy now enables the calculation of electromagnetic fields

in complicated three-dimensional (3-D) models. One important

application area for these field calculations is, e.g., hyper-

thermia. In order to determine the temperature in a patient’s

body we need to know the distribution of the absorbed power

density, and in biological metia this is proportional to the con-

ductivity of the tissue and the square of the contribution made

by the electric field strength. Electrical properties of neighbor-

ing tissue compartments meeting at interfaces can contrast very

strongly (e.g., bone/muscle interface and fat/muscle interface).

This means that to perform these model calculations accurately

enough we must take precise account of local interface details

such as curvature, torsion, etc. Nonsmooth interfaces like

corners and wedges, and points at which three or more

electrically different media meet and where no clear interface

standard is definable, so-called multiregion points, must also

be included in our numerical eonsiderations.

The singular behavior of E-fields near nonsmooth interfaces

(in 2-D TE cases) has already been theoretically described in

[1] and [2]. A similar singular field behavior can be observed

in biological media at mr,dtiregion points. These points are a

serious obstacle to numerical hypertherrnia-modeling methods,

regardless of whether the integration technique used is local

(finite elements method (FEM), finite-difference time-domain
(FDTD) method, or finite integration technique (FIT) method)

or global (boundary elements method (BEM), or integral

equation (IE) methods). In [3] and [4], elements with special

E-field interpolations were applied to 2-D TE cases in order
to reconstruct the singular field behavior described in [1]

and [2]. As far as the authors are aware, a generalization

relating to the 3-D case has not yet been constructed: An

appropriate way to deal with these singularities may be the use

0018-9480/96$05.00 @ 1996 IEEE



544 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO 4, APRIL 1996

of edge elements or combined nodeledge elements for the FEM

[5]–[6] in combination with local refinement on tetrahedral

grids; however, these techniques have until now only been

applied to comparatively simple 3-D structures. For realistic

patient modeling, a finite elements (FE) method was described

recently [7] in which the E-field values in critical regions can

be determined indirectly from the calculated potentials or 11-

field distribution. This method uses tetrahedral nodal elements.

In the conjugate gradient fast Fourier transformation (CGFFT)

method [8] which solves the volume integral equation (VIE) on

uniform cubic grids, the E-field distribution is also determined

indirectly from the calculated potentials. The recently pre-

sented global multiple multipole (MMP) method [9] achieves

a good accuracy, in particular near boundaries, but it shows

strong practical limitations for scatterers with complicated

angular shapes or inhomogeneous bodies. Finite differences

(FD) and finite integration (FI) techniques for calculating 3-

D field distributions in inhomogeneous media—such as the

FDTD method [10]–[ 15], and the FIT method [16]–[ 17]<an

be applied to strongly heterogeneous structures, but they

require uniform cubic grids and show difficulties in modeling

curved or sloped interfaces. As far as the authors know, no

algorithm for nodal elements has yet been described whose

construction takes explicitly into account E-field behavior at

arbitrary 3-D interface combinations. This applies especially

to locations at which a singular E-field behavior is expected.

In [18] we introduced a basis version of an algorithm for

the VSIE method for linear nodal tetrahedral elements with

which explicit E-field modeling has already been performed

on combinations of interface wedges, comers, and multiregion

points. We described there the numerical procedure for forcing

the boundary conditions at interfaces by defining a suitable

polarization surface charge density q at the pair of points for

E-field calculation (linking with the normal flux density Dn),

and forming the limes (“self-contribution”) of the strongly

singular integral over q. In [18] we also performed a code

comparison between the VSIE method and the FIT method

[16]-[ 17], testing various iterative methods for solving the

linear system of equations given by the VSIE method. The

most effective solver for VSIE proved to be GMRES [19].

While in [18] the treatment of 3-D structures with non-

smooth interfaces was limited to the special case of an

inhomogeneous cylinder, in this paper an improved general

VSIE calculation method is developed using linear nodal

elements for arbitrary 3-D combinations of electrical inter-

faces, including smooth structures, and structures with corners
and/or edges. In contrast to [18], the “special case” of a

smooth interface around a grid node is given naturally and

consistently by this formulation. In order to achieve sufficient

accuracy when determining the E-field in the immediate

proximity of interface elements, the integration is analytically

performed over these elements. During this integration, local

characteristics of the interface are taken into account using

special numerical procedures such as describing E-fields as

their tangential and perpendicular components and splitting

grid nodes. In order to avoid overestimating the influence of

field singularities at nonsmooth interfaces, an optimal grid-

dependent omission radius is estimated for linear interpolations

using local polarization charge shifts (see Appendix). The

plausibility of the estimate is confirmed using suitable numer-

ical energy studies of a layered cube. Further numerical VSIE

results for different geometries can also be found in [20],

II. NUMERICAL METHOD

A. Description of the VSIE lfethod

1) General Volume Formulation (VIE): For an inhomoge-

neous domain of interest, which is embedded in an unbounded

homogeneous background medium Eb, Maxwell’s Equations

can be formulated in terms of the known incident field and

the unknown scattered field

H = H,nc + H,cat . (lb)

The incident fields EinC, HinC are defined as electromagnetic

fields remaining if the domain of interest is replaced by

the background medium ~b. Conceptual basis of the integral

equation (IE) formulation is the substitution of the electri-

cal heterogeneities by apparent (or polarization) electric and

magnetic sources radiating into the unbounded background

medium (Fig. 1). These apparent sources generate the scat-

tered fields E,Cat, H~Cat—and the Green’s function of the

background medium eb describes their radiation behavior.

We begin with the assumption that within the domain of

interest V, the electromagnetic material properties e and ~

and the fields H and E can all be represented as continuous

local functions (V includes the inhomogeneous boundary layer

between the domain of interest and the background medium).

This allows us to start by giving IE (la) and (lb) as a general

volume formula without a surface integral (see Problem I in

[21, p. 285]). Cases with discontinuous material properties can

then be processed using suitable interface integrals that can be

derived from the general volume formula [see (10)],

In particular, if a magnetically homogeneous domain is

assumed (constant permeability u = ~. in biological media!)

the integral equation for E, (( 1a), see [21, p, 287]) becomes

E~Cat = –jW/Lo

/

J(r’)g(r, /) d3#

v

= 2’1 (E) + T2(E) (2)

where apparent volume current density

~(r’) = jti(c(r’) – tb)E(#) (3)

apparent volume charge density

p(d) = ~(E(T’)6’c(r’))

scalar Green’s Function of the background medium

1
g(7-, ?-’) = ~–jklr–r’l

47+-–7-’1

(4)

(5)
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the gradient of the scalar Green’s function

F’g(r,?-’)= - r–“
47rlr - r’13

. (jklr – 7-’1+1) . e-~kl~-r’l (fjj

propagation constant of the background medium

k = Wm. (7)

A harmonic time dependence (e~wt) is assumed. E, J, p, e are

complex quantities (e = COC”’Z– ja/w in biological media).

In contrast to the weakly singular integral T1 (1?), the strongly

singular integral Tz (E) does not disappear in (2) for r ~ r’

(see (19) in Section III-C).

2) Transition to a Volume-Surjace Formulation (VSIE):

Many electromagnetic problems lead to the domain of interest

being split up into electrically homogeneous subdomains c~

as shown in Fig, 1. For this type of problems, the value

of grad (c) in 1[4) is other than zero only inside the thin

inhomogeneous boundary layers between the homogeneous

subdomains and between the subdomains and the background

medium. Thus, the volume integral T2 (E) over thin boundary

layers can be transformed into a surface integral over

interfaces. This change is illustrated for a boundary layer

El /e2 of thickness T (see Fig. 2). The layer is discretized

using differential cubic volume elements of side length K

(i= l,... ,~~,~1 =T/K, j= l,. ... iVJ, N~>>IVIIn In

index direction i, i.e., perpendicular to the boundary layer,

a linear (and therefore continuous) transition from cl to cz

is assumed. In volume element (i, j), the discretization of

(4) gives

In this equation, only the E-field component perpendicular

to the boundary layer, i.e., in direction grad (e) contributes

to the result. Introducing the interface condition for electrical

flux density ~(i) En(i) = Dm for all i = 1,..0, T/K, we get

( 1
p(i, .1) = Q: . —

)
~ D.. (9)

6(2 + 1) – t(i)

As T tends towards zero, the boundary layer becomes an

interface I’ and T2 (E) becomes a surface integral over 17

J
lim T2(E) = 72(E) = ~ ~ q(r’)~g(r, r’) d2r’ (lo)
T+O

where (complex) apparent surface charge density is given by

Finally, with (10), (la) and (2) can be formulated as the so

called volume-surface integral equation (VSIE)

E = T1 (E) + ~z (E) + ~inc. (12)

This formulation was used as a basis by Wust et al. in [18].

external impressed sources

@

E
‘b

inc

+

external impressed

‘Zn~=E
medium &b

d~main of interest V
Fig. 1. Induced polarization and homogenization principle for VSIE. The
domnin of interest V consists of sections of homogeneous subdomains ez and
is surrounded by a homogeneous unbounded background medium @. In the
domain of interest, CZcan be replaced by ~b if suitable apparent (polarization)

sources are defined, apparent volume current density .7 in V, apparent surface
charge density q on the internnl interfaces between the subdomains G and on
the outer interface between V and the background medium. The entire field
problem can be solved using a single Green’s function for the background
medium (homogenization). The total field E is the sum of the known incident

field E ,nc and the unknown scatteredfield E,.at (generated by apparent

sonrces) which is linearly dependent on E. In this formulation, the incident
fields are generated by external impressed sources, but a coupling between

sources and the domain of interest can generally also be taken into account
(not shown here).

E2
1
1 ?

- i=Nl

7

E(NI+I)

t
T P i=N~2~- ~(Nl /2)

_ id I
E(l)

\
p(i,j) !

%

Fig, 2. Transition from volume (VIE) to surface (VSIE) formulation for a

boundary layer. A boundary layer of thickness r which lies between two
homogeneous subdomains 61 and C2 is discretized using dhTerential cubic
volume elements (i, j) of side length ~. In the index dkection i = 1, ..., T/~,
i.e., perpendicular to the boundary layer, a linear (therefore continuous)
transition is assumed between 61 and .52. For T + O, the layer turns into
an interface r and the strongly singular volume integral over the apparent
volume charge density becomes a surfme integral over the apparent surface

charge density.

B. Discretization Procedure of the VSIE

1) Linear Equation System: ‘The VSIE method can be ap-

plied to any kind of volume or interface elements. However,

to discretize random irregular structures with curved interfaces

(such as tissue compartments in biological media), tetrahedral

grids [22] are the suitable type of grid.
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curved interface element r

‘2

Fig. 3. Discretization of interfaces of arbitrary curved geometries. A curved
triangular element ?Cis given by grid nodes Qj (j = 1, ., 3). For every grid

node Qj a nodal normat nj with respect to r is specified as well as a surface
charge density q]. r is approximated by the pkme triangle A (normal ~A ).

When generating grid nodes, the first thing to do is mark

on interfaces the multiregion points, wedge points, and corner

points. The interfaces are then discretized by introducing other

grid nodes. The basic type of interface element generated .by

doing this is the curved triangular element 17which reproduces

the actual surface almost exactly (Fig. 3). For the numerical

process we also use the plane triangular element A formed

by the same grid nodes as the associated element 17. The

electrically homogeneous subdomains are then filled with

tetrahedrons that make up the volume elements V(z).

We can now discretize the VSIE formulation (12) for the

E-field

E(k) =

atreference points k = 1, ..., ~k

Nr

E(k)+~ ~~.cat(r (~) -+, p(~))
mc

Nv

+ ~ AE,..,(V(i) * P(k)) (13)
‘i=l

where N~ is the number of reference points, Nr the number of

interface elements, and AJv the number of volume elements.

The symbol a is used to indicate the integral contribution of

r or V to a reference point P.

As the scatter contributions AE,ca~ show linear dependence

on the values of E(k), we are provided with a linear system

of ~k equations. The associated matrix is full (see [18]),

2) Classification of Interjace Elements: In order to par-
tially compensate for this numerical disadvantage we use

sorting methods when calculating the convolution integral

in (12) or the scatter contribution in (13). To this end, the

interface elements are classified with respect to their distance

from the reference grid node Q.

a) Adjoining inte~ace elements (Fig. 4): In order to cal-

culate the scatter contributions to Q we must perform an

analytical integration over curved elements r which takes

into account details of the local geometry and surface charge

distribution (see Section II-C). Simple numerical integration

methods such as the Gaussian quadrature are not accurate

enough.

b) Interjace elements in close proximity: The elements

that lie within close proximity to Q are defined as those

whose separation from Q is not more than six times the

mean element dimension. For these elements it is enough to

perform numerical seven-point integration over plane elements

A with an additional solid angle correction for the normal

contribution (similar to the calculations described in Section

II-C for adjoining elements).

c) Distant elements: For more distant elements; a one-

point integration in applied.

3) Nodal Normal Definitions: The electrical interfaces are

represented by plane/curved triangles A/I’, For many practical

applications these interfaces can be assumed to be smooth,

i.e., the surface normal (and curvature) depends continuously

on position. This continuity no longer exists when a curved

smooth interface at Q is reproduced using plane triangular

elements A(i) (i = 1, . . . , N) meeting at Q. In this case, the

direction of element normals n:) near Q changes abruptly.

In contrast, if we use an arrangement of curved triangles 17(i)

(i = 1,. ~., N) associated with A(i) for the reproduction of

this interface, we can define a common node normal n at Q

for all cases of I’(i) (i = 1,.. ., N) that adjoin grid node Q

(n can be generated by suitably weighting the surface normals

‘i) – I . . N see below and [23]). Because all 17(i)nA9t—)J9
(i = 1, ~. , N) show the same normal n(i) = n at Q, the

continuity of the interface normals at the grid node Q is

implicitly guaranteed.

If Q represents a corner, wedge, or multiregion point, then

the interfaces are assumed to be smooth in sections. The

interface comer points (such as Q in Fig. 4), wedge points,

and multiregion points are treated using the same numerical

procedure, which can be described as follows.

Let us assume that Al smooth interface sections meet at

multiregion point Q (for example, at every corner point of a

cube meet ill = 3 smooth interface sections; at every point

on a cube’s edge, M = 2 smooth interface sections meet).

Each interface section m = 1, .0. , N1 can be made up of

Nm (curved) triangles that meet at Q. This way, we can

generate for each interface section m one node normal nm

(m = 1, ~~~, M) in the immediate vicinity of Q. A tangential

plane is defined perpendicular to each node normal nm (see

Fig. 6). Following [23], the node normals nm are defined using

weighted mean values of the surface normals n$). Mean value

generation is only done using the triangles that go to make up

surface section m at Q

where lA(i) I is the area of the triangle A(i), Nm is the number

of interface elements making up a surface section m at Q.

This definition covers the case of the smooth surface at Q

mentioned at the beginning (M = 1, IVl = N).

4) Quasi-Static Approximations: To calculate the scatter

field contribution from 17(;) to a reference point P(r) in the

immediate vicinity [in accordance with (13)], we can perform

a quasi-static a~proximation (k IT – # I << 1) in (6). This
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gives, from (2)

This is the basic equation for the analytical integration using

the interface elements (see Section II-C).

C. Integration over Adjoining Interface Elements

For the general case, we assume N curved triangular

elements I’(;) (i = 1, ..., N) of the type shown in Fig. 3,

which meet at a node Q (shown schematically in Fig. 4), Note

that the numerical methods outlined below are valid for smooth

boundaries as well as for corners, wedges, and multiregion

points. For Q we define a rf-spherical neighborhood V6(Q)

with a local radlius of 6. This V6(Q)-sphere cuts a circular

segment rf) out of every adjoining interface element 17(;).

The selected value of 6 is small enough in relation to the

size of r(i) to allow us to assume that 17$) is a small plane

triangular interfa~ce element with the surface local normal m(i)

and the local surface charge density value q(i) [see (11) and

(14)]. This implicitly gives 6 information on the curvature

of the discretized surface, and allows us to estimate 6 from

the dimensions of the adjoining elements (see Appendix). The

I’(i) ,Sare used tc, calculate the singular scatter contributions in

V:(Q). In ideal conditions the numerically determined results

should be independent of the specific choice of 6(Q). If the

sutiaces are smooth enough, this actually happens, as shown

in Section II-C-4. To every 17&) (k = 1, ~.. , N) adjoining the

grid node Q, a reference point ~(~) is given by shifting Q

an infinitesimally small distance along the line bisecting the

contact angle of 1’~) (Fig. 5). The relation 11~(~) – Q II <<6

holds with respect to the local radius 6. Further splitting of

F’(k) along the local normal m(~) yields Py~_ where this shift

is characterised by llp(~) – P~~_ II << 11~(~) – Q1l. Each

surface charge element 17ti) contributes a scattered E-field to

~(~) according to (15). Following [24], this contribution is+/–
separated into a normal component A13$~,~ (parallel to rz(i) )

and a tangential component A13$. Thus, (15) becomes

AE,cat(r@) + P.y )

= AEn(,rm(r@) +- PfJ + AEtg(r(i) 4- P~))

~= l,... ,N; z=l,... ,N. (16)

The normal scatter contribution consists of a local term,

which depends on geometric details of r$) in relation to

P(k) and a global term, which reflects the complement l$i.+/–’
The latter term is sensitive specifically to the curvature of

the surface elennent 17(i). However, it is independent of the

particular (differential) shift of P~~_, and therefore P~~_ can

be substituted by Q.

Now let us outline numerical calculation of normal contri-

butions of I’(i) to the scattered E-field at P~~_.

Fig, 4. Elements adjoining grid node Q, Node normal definitions. An

interface corner point (comparable with a cube vertex) is the meeting place

of three smooth curved interface sectiuns. The sections are separated from

each other by interface edges (thick lines). In this case, each section is made
discrete using two curved triangles r, giving Q six adjoining elements. We
cannot define for Q a unique surface normal. However, for each interface
section we can define a node normal in the dkect vicinity of Q, giving Q a
totat of three nodat normals. The direction of a node normat to a particular
interface section is equivalent to the average of the normals to the plane
triangular elements A (not shown here, see Fig. 3) that represent that section
(in thk case two triangles).

1) Normal Local Contribution: The relationship between a

surface element d2r’ with normal n at r’ and the solid angle

(visual angle) subtended by d2r’ at r is given by (see [25])

{n(r’) o (r - r’)} . d2# = _df2(r, ~,, ~,

Ir – r’13
i=l >. . ..N.

(17)

Since 17$) are assumed to be plane, n(r’) is constant for every

(0(~=1, #.$, N) in (17) andr$) Thus, setting n(r’) = n

substituting (17) into (15) or (16) the normal contribution of

each 17~) to P~~_ is given by

2 =1,... ,N, k=l,.., N, where O s O(k’i) s 27r.

Fig. 5 shows that ~(~’i) is delimited by the vector Q–P(~) and

the tangential vectors of the eclges of r$) at Q. Particularly

important is that fl(~’i) is independent of 6. For r -+ r’ (i.e.,

i = k) we obtain fl(~’~) = 2m. In this case

Alkrm(ry %’ Py) = +5:J’W k=l,..., N
.

(19)

which is identical to the normal “self-contribution” of a

charged interface and yields the correct jump of the normal

13-field on the interface (see also [18]). The “special case” of

a smooth interface around a grid node is given ‘naturally by

(18), because in this case all m(i) (i = 1,..., N) are identical

and therefore ~(~’i) = O for all i # k.
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~Jk)

P(k)*
Q ll~-~,.ll<cllQ–pll<<~

m

‘+4 .:\...”’
K2(c21, r) /

element k:

Fig. 5. Q’s neighborhood. Splitting of grid node Q to process the local

normal scatter field contributions. The reference point F’(’) is given by

shifting Q an infinitesimally small distance along the line bisecting the contact

‘k) Further splitting of F’(k) along the local normal n(k) yieldsangle of rx
the pair of ‘reference points for field determination F’~k?_. At every P(’) a

!/

local charge density q(k) as well as local normal rz(k) is specified. While the

local normal self-contribution of the element r(’) to Pyj_ is proportional
!,

to the solid angle (2( k,’), 0( k,’) = 27r (here not shown), the local normal

contribution of the contacting surface charge element r(i) is proportional to

the solid angle 0( k,’) and is equal for both points P~)_. Q( k,’) is delimited,,
by the vector Q-P(’) and the tangential vectors of the edges of r~) at Q

(t~~ and t$~).

2) Normal Global Contribution: The normal contribution

of the curved surface element 17$~ is calculated again on the

basis of (15). This contribution is zero for noncurved triangles.

Since 6>> IIQ – ~(~) II, the scatter contribution is independent

of the particular location of Pf~_. According to Fig. 6, the

solid (visual) angle of I’~~ as ‘seen from Q1, fl(Ql, I’(i)),

(Q I is identical with Q) is formed in good approximation

bY QIQ2, Q1Q3, QIQi, QIQ! (Q~/3 we the projections of

Q2/3 on the tangential plane of r(’) at QI (perpendicular to

~f)
. rJ(i) on r$) at Q1 ), As another approximation, the

solid angle Q (Q 1, r(i)) can be separated from the integral

and the contributions from q:) (j = 1, . . ,3) can be weighted

according to the curvature (given by the angles /3, see Fig, 6).

Finally we get

2=1, . . ..N (20)

(i) _ 1
wl—–

3

‘1 tangential plane

Fig. 6. Projecting the curved triangular interface element r onto the tangen-
tial plane defined by the node normal in the immediate vicinity of Q ~ (see
Figs. 3 and 4). The projected triangle is called U. The curvature-dependent,
global normal scatter field contribution (direction rzl ) made by the surface
17>a at QI is proportional to the solid angle f2(Ql, r) subtended by r>6

at Q 1. A good approximation of this solid angle is given by the triangular
sides Q ~Q2, Q ~Qs, Q ~Q!, Q ~Q~. When calculating the tangential scatter

field contributions (perpendicular to nl ), a good approximation of r can be
achieved by replacing it with the projection W (assuming that the curvature
is not too large).

Clearly, the more curved part of I’$) gives a larger con-

tribution to the normal component. For noncurved interface

elements (r E A ~ W in Fig. 6) the solid angle fl(Ql, I’(i))

is zero and consequently the global normal contribution dis-

appears.

The tangential component proves to be nearly independent

of the curvature of the interface around Q1, provided the solid

angles !2(Q1, I’(i)) (i = 1, ..., N) are not extremely large,

i.e., the used grid is not too coarse. Therefore, the projection

of I’(;) into the tangential plane V(i) (defined by the normal

‘i) ~ Tzti)) is employed for numerical calculation (Fig. 6).%
No dependence on the specific location of Pf~_ is seen.

Using Cartesian coordinates in the triangle Q(i) according

to Fig. 7 the integral of (15) reduces to

L13tg(di) + Q)

z=l, . . ..N. (21)

The tangential scatter contribution is predominantly influenced

by the spatial variation of the charge density distribution,

which is approximately given by linear interpolation

V(Z)v) =U%+bv+ql. (22)
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Insertion of (22) into (21) yields, first, a nonsingular part from

ax + by, which reflects the variation of q(z, y) relative to ql

and is therefore called here the gradient term.

Second, a singttkw integral emerges from the constant VI,

which is therefore called here the singular term. Mainly the

near-range part of V around Q affects this integral.

A description of the numerical calculation of both parts of

AEtg is given below.

3) Tangential Gradient Term: The integration over VIil

with reference to (15) is performed using local Cartesian

coordinates as shown in Fig. 7 defining the line over Q1 Q; as

abscissa (again Q1 E Q). We have shown the results for the

case O(i) < 7r/2 which is typically fulfilled for most of the
1/2 –

triangles in a 3-D tetrahedral grid. In the case of o~?o > 7r/2,

formulas are slightly different (see [26]).

Integrals of (21) are analytical and after

obtain

~:,bi(f -AE$ad)(Ii(ij + Ql) =–—
j52

-/-

some algebra we

~$) )

where

- (1- g + ji)~ (2W

( )(c#),=--:+ ;-e+;kfh : (23d)

with the gradients h = y3/x3, hz = ~3/(x2 – x3) as well

as H = l/h, Hz = 1/hz the geometrical factors: a =

(1 + h2)1/2, b = 1 + h;, C = (1+ Hz)ljz, g = 1 + H;,

P = (x! + Y~)112, g = (x~x~2 + y~x~2)l/2 and with
logarithmic functions

Fig. 7. Definition of the locat coordinates (z, y) used for calculating the
tangential scatter field contributions made by a projected triangular interface
element W. In order to avoid sign-dependence when integrating in Cartesiao
coordinates, the axes z, y ‘perpendicular to rtl are selected so that the triangle
W lies within the positive region of z and y (always possible for interior

angles 91 < rT/2). The z axis runs along the side Q1Q!. The gradientterm
is calculated in cartesiarr coordinates x, y; the calculation of the singular term

is performed using polar coordinates p, w for an equivalent circular segment
with the same interior angle and area as W (radius Leff ).

4) Tangential Singular Term: For calculating the second in-

tegral (inserting the constant ql into (21)), local polar coordi-

nates p, p with respect to Q1 are introduced yielding

Here, the projected triangle @;) has been replaced by a disc

segment of apex angle & and radius k with the same area

as the original element V(i) (compare Fig. 7)

,

For calculating (24), a small disc with radius p = 6’.. is

omitted around the point Q1. Solving the integral in (24) we

obtain

where

()
L:(i

(cs~j)z = sin (t9~)) . in —
6

(25a)
av

The solution is independent of 6.
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()
L(i)

(CZ!J)U = {1 – cos(~~))}ln & . (25b)
av

For a smooth interface at point Q1. i.e., (d(l)+,.. ., +0(’)+,
. . . , +6(N) = 27r), the sum of the tangential contributions

(25a) and (25b) originating from the points in the disc is

zero if we integrate all the triangles adjoining point Q 1. Thus,

the singular term is independent of the value of 8... If the

interface at point Q 1 is not smooth, the integral contributions

will remain dependent on the exclusion radius 6... Our reasons

for selecting 6av are explained in detail in the Appendix.

III. DISCUSSION AND CONCLUSION

We have presented an efficient algorithm using the VSIE

method for 3-D field calculation in electrically inhomogeneous

media which performs explicit E-field calculation (i.e., not

by using the H-field or potential) directly on any electrical

interface combination. The code is working on the basis of

nonuniform nodal linear tetrahedral elements and is capable

of calculating arbitra~ inhomogeneous patient models.

In global field calculation methods (IE, BEM), one of which

is the VSIE method, the open radiation conditions are satisfied

in the formulation using the Green’s function of the back-

ground medium. Unlike most local methods (FEM, FDTD,

FIT), only the actual domain of interest must be discretized and

not the surrounding background medium. However, there is the

numerical disadvantage that, because of the global behavior

of Green’s function, the method leads to full linear equation

systems.

The VSIE method is particularly precise in dealing with

electromagnetic fields near the numerically critical multi-

region points without overestimating the E-field singularities

present there. By splitting the integral equation into a volume

and a surface term (VSIE-formulation) we can calculate the

field discontinuities at the places they actually occur, i.e., di-

rectly on the interfaces. To do this we “split” grid nodes on the

interface and treat them as pairs of reference points, allowing

us to explicitly calculate the field on both sides of the interface.

The field values at the two reference points nevertheless

remain related due to the shared value for polarization surface

charge density, The performance of the limes ~ ~ r’ (“self-

contribution”) of the strongly singular surface integral using

polarization surface charge density allows us to join together

the inhomogeneous regions while satisfying all boundary

conditions (see also [18]). The field contributions are split into
physically distinct tangential and normal contributions in order

to take into account the specific local interface geometry. In

order to avoid overestimating the influence of the singularity,

an optimal grid-dependent omission radius is estimated for

linear interpolations using local polarization charge shifts. The

plausibility of the estimate has been confirmed using energy

studies (see Appendix).

In the VSIE method, a numerical procedure (such as Gauss-

ian quadrature) is not suitable for elements bordering on one

reference point for surface integration. Instead, analytical solu-

tions are locally applied that describe the field behavior more

accurately than numerical methods (even if the local analytical

solutions are of a partially approximative nature (quasi-static

approximation, disregard of curvature in tangential contribu-

tions, etc.) and only allow linear field interpolation). The

reason for this lies in the strongly singular behavior of the

Green’s function gradient. This behavior causes numerical

integration (in which the surface is approximated by a group

of integration points) to be extremely sensitive with regard to

the geometrical location and number of integration points on

the element. Geometrical details such as interface curvature

and position of interface triangles in relation to multiregion

points play a particularly important part in determining the

correct field values on the interfaces (and near the interfaces).

Scatter contributions can be described using suitably defined

solid angles. Here too, it would be very time-consuming to

numerically calculate the field near the interfaces with a similar

accuracy to that achieved using these analytical expressions.

APPENDIX

ESTIMATION OF THE AVERAGE EXCLUSION

RADIUS 8 FOR LINEAR NODAL ELEMENTS

The singular term for the tangential direction in (25) is

dependent on 6. For a smooth interface at grid node Q, the sum

of the tangential contributions (25a) and (25b) originating from

the points in the disc is zero if we integrate all the triangles

adjoining point ‘Q 1. Thus, the singular term is independent of

the value of tiav. If the interface at point Q1 is not smooth

(multiregion points, points on interface corners and interface

wedges), the integral contributions will remain dependent on

the exclusion radius 6av.

It is therefore important to understand the implications of

the choice of 6. For 640, the tangential scatter contribution

of each element 1’(%) at the reference point would be infinite,

This singularity is caused by the “infinitely sharp edge”

of the abruptly ending surface charge density on I’(z). In

order to approximate this singular field behavior by using

the linear interpolations of surface charge density we assume

a “roundness” or “fuzziness” of comers and edges which is

dependent on the problem in hand and whose extent is given by

6. The value of S must be chosen in relation to the size/extent

of the elements; if it is too small it will lead to exaggeration

of the singularity (corner, wedge, multiregion point), and if

too large it will give rise to unjustifiable inaccuracy in the

consideration of interfaces (see the numerical energy study

below).

The sinjgdarity at QI can be “naturally” resolved as shown
in Fig. 8 by modifying the linearly interpolated surface charge

density v A T by defining ~$) = O. The charge at QI resulting

from q~i) is apportioned in equal amounts Q~,3 and shifted

away from Q1, guaranteeing the conservation of charge

/
q(7-’) d27-’=

/
?j’(?-’)d2?-’ 2 =1,... , N (26)

w(, ) w(, )

on V(i). Thus: ~$~~ = q$~~ + q~)/2.

Now we assume that the tangential contribution (21) to

QI from q(’) (r’) with omission 6(’) should be equal to the
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LAa

L

‘AEtg

Fig. 8. An estimate of the optimum exclusion radius 6 for calculating the

singular tangential contributions on tire projected triangle. The singularity at
Q1 is resolved by modifying the surface charge density q + V, if 7jl is

defined as O. In order to guarantee conservation of charge, the charge at Q1
resulting from ~1 is split equally between Qff,3 and shifted away from Q1.

~ls produces vz/3 = V2/3 + ql \z. W@ Can find a VSk Of 6 due tO the

assumption that the tangentist contribution to Q1 from q(r’ ) with omission 6

(left) should be equal to the tangential contribution from 7j(r-’ ) to Q1 (right).

tangential contribution from 7j(i) (/) to Q1 (see Fig. 8)

-1
~$;

—
— ~(r’)6’g(Ql, T’)d2r’ ~= l,... , IV. (27)

o

Equating the coefficients of ql on both sides gives [see (21)

and (22)]

(4hY ~(,)
- (cYy)./,- (4WY

= : “ ((4?)./,+ (4/)./,) i= l,... , N. (28)

With (23a)–(23d) and (25a) and (25b) we obtain the following

approximation

L/
(29)

From (28) and (29) we gain (independent of the coordinates

x! Y)

Therefore, independent of the surface charge

~(i) = ~-1.5 . ~$J i=l, . . ..N.

(In the 2-D TE-case, analogously, the quotient of the optimal

“exclusion radius” and of the line element length proves to

be e-2.)

1

I -1 -0.O-O.&O.4-O.2 O 0.20.40.60.0

x

--- y-ax~s
— x-axm

Eb=lo

xla; yla

Fig. 9. Arrangement for calculating the E-field inside a two-layered cube.

Outside edge = 1.4142 a, inside edge = 1.4142 b, b = a/2 (2a, 2b:
diagorrats in plane of symmetry z = O). View of symmetry plane z = O
the illustration shows half of the interface elements in the tine tetrahedral
grid (24 576 tetrahedral). The cube is surrounded by a background medium
(dielectric COnSt~t 6b, wave propagation cOn$t~t k). The incident pkme

wave is polarised in the y dmection and is propagating in the z direction.

The diagram on the bottom shows the E-field distribution for q = 1, i.e.,

6 = 6a” (see Fig. 10) along the x and y axis of the cube. The field maxima

in the plane z = O form at the poles T and 13 of the “inner” cube (medium

electric contras~ El/60 = 80; cz/eo = Eb/60 = 10). The field minima

apPesr’ at the side points R and L. The VSIE results correspond qualitatively

to theoretically predicted field behavior from [2]: compare maxima at T/B

with Fig. 2(c) in [2], compare minima at R/L with Fig. 2(g) in [2].

Averaging using all i = 1,0,., N interface elements 17(i) at

Q1 gives us an expression for the average exclusion radius 6..

(31)

In the following, the selection 6 = 6., will be also made

plausible by varying 8 and simultaneously considering the

stored energy and, as additional test, E-field distribution in

the problem domain V (Figs. 9–1 1).

The problem domain V is given by a layered dielectric

cube. Assume a propagation of plane wave parallel to the

diagonal across the plane of symmetry z = O, as shown in

Fig. 9. The origin is the center of the cube, and points R,

L, T, B are specified. The layered cube is discretized using

tetrahedral grids (coarse and fine grid containing 3072 and

24576 tetrahedral, respectively, see also Fig.’ 9). The field

behavior on the cube’s plane of symmetry at z = O may be

expected to correspond to the field behavior around an infin-

itely long square dielectric cylinder running parallel to z (2-D

TE case). This represents an analogy with test cases in [2],

where the E-field at a 2-D-TE interface wedge is analytically

calculated as a superposition of solutions for an electric and
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n — HC
---” MC

Fig. 10. Energy studies for optimum determination of the omission radius
6 for calculation of the tangential scatter contributions of triangular interface

elements. The diagram shows the relative stored energy IJh’(q)/IV(g = 1)
in a layered cube for high (61/62 = 78/1, HC curve) and medium

(Cl /ez = 80/10, MC curve) electrical contrasts in relation to the variation
parameter q = q(ti ) = in (Leff /6)/in (L,ff /L5av ). &. is the optimum value
of r5previously theoretically estimated (q = 1 for 6 = &.). The graph shows
that the stored energy is at a minimum in the range O < q < 2 This range
is studied in more detail in Fig. 11.
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Fig. 11. A comparison between energy values W’( q)/W(q = 1 ) for a coarse

(3 072 tetrahedral) and tine (24 576 tetrahedral) cube grid, and for high (HC)
and medium (MC) electrical contrast m the range O < q < 2. The energy
minimum M m fact located at/near the value q = 1, which has been previously

theoretically estimated, even if deviations arise when determining the energy
minimum because of numerical inaccuracies in integration (field singularities
at corners and wedges), particukuly with the coarse grids. The mimmum is
heavily accentuated when the contrast is high. Using a finer grid locrdizes the
influence of 6 variations on the field distribution (the global energy curves
become flatter).

a magnetic wall. The local nature of the wedge singularities

in question means that the dimensions of these structures are

small in relation to the incident wavelength. If we study the

VSIE integrals (12) we find that for larger wavelengths the

contribution from the surface integral is dominant. Thus, we

can perform our energy studies with good approximation for

the quasi-static limes case (kb << 1, ka << 1 in Fig. 9)

assuming that the investigated structures are surrounded by an

infinitely large background medium (dielectric constant e~).

Furthermore, we assume that the cube’s outer layer has the

same electrical material properties as the background medium

(C2 = ~~ in Fig. 9). The variation studies are performed for

two combinations c1/ez. The dielectric constants are selected

according to the material properties at 90 MHz, assuming zero

conductivity to avoid energy losses and to allow a qualitative

comparison of the E-field distribution with cases presented

in [2]. The first combination c1/e.2 simulates the waterlair

boundary with a very high electrical contrast (El /cO = 78,

e2/eo = 1, i.e., ~1/e2 = 78, abbreviation HC); the second

simulates the musclelfat boundary with a medium electrical

contrast (el/co = 80, c2/co = 10, i.e., cl/&2 = 8, abbreviation

MC). The abscissas in Fig. 10–11 are labeled with the variation

parameter q, q = q(h) = in (L,fl/6)ln (Leff/6aV) (q = 1

for 6 = 6...). Only the physically practicable values of q are

considered (q > 0, i.e., 6 < Leff).

A. Variation Study of Stored Energy and

Qualitative E-Field Comparison

The correct solution in a dielectric problem domain V

should simultaneously show a minimum in stored electric

energy

/
w = ; ~ elE12dv. (3)

r

Varying 6 we can observe (Figs. 10 and 11), that a minimum

in stored energy in fact occurs at q = 1 (i.e., for 6 = tiav)

as theoretically estimated above, even if deviations arise

when determining the energy minimum because of numerical

inaccuracies in integration (field singularities at corners and

wedges), particularly with the coarse grids. As expected, the

influence of variations in 6 decreases (or becomes more locally

limited) as the grid becomes finer, resulting in the minimum

becoming flatter (Fig. 11).

As additional test, the actual field distribution can be qual-

itatively investigated (e.g., field behavior at wedge points R,

L, B, and T).

An analysis of the qualitative field distribution restricts the

range to O < q < 2.2. which in fact includes the value

g = 1 for the optimum omission radius theoretically found
above. Only in this range of q do the physically correct

minima and maxima appear at the wedge points (see the field

distribution for g = 1 in Fig, 9: field minima at R and L

correspond qualitatively to Fig, 2(c) in [2]; field maxima at

B and T, correspond qualitatively to Fig. 2(g) in [2]). In the

range 2,2 < q < 3.5, i.e., when 6 is reduced further, stored

energy values increase (as shown in Fig, 10), In this range the

calculated field distribution shows maxima at all four wedge

points, which is strongly different from [2] (field distributions
for q # 1 are not shown” in this paper). True, further reduction

of 6 (3.5 < q < 100) leads to a reduction in energy, but

the field distribution shows minima at all four wedge points,

which does not correspond to [2] neither. For q > 100, i.e.,

/i/Leff ~ O. the field strength at all wedge points tends towards

zero, and at the grid points neighboring the wedge points huge

maxima occur that increase as 6 tends towards zero giving the

increasing values of stored energy. We can therefore conclude

that if 6 is too small, incorrect results will be obtained by the

code.

This model study gives qualitative information about the

influence of variations in 6 on a physical parameter which
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should be minimlal. Keeping in mind that deviations may arise

when determining the energy minimum because of numerical

inaccuracies in integration (field singularities at corners and

wedges), particularly with the coarse grids, we can certainly

specify a narrow range around the value of q = 1, which is

the value theoretically found above.
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