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A Volume-Surface Integral Equation Method for
Solving Maxwell’s Equations in Electrically
Inhomogeneous Media Using Tetrahedral Grids

Jacek Nadobny, Peter Wust, Martin Seebass, Peter Deuflhard, and Roland Felix

Abstract— Starting with the solution of Maxwell’s equations
based on the volume integral equation (VIE) method, the transi-
tion to a volume-surface integral equation (VSIE) formulation
is described. For the VSIE method, a generalized calculation
method is developed to help us directly determine E fields at
any interface combination in three-dimensional (3-D) electrically
inhomogeneous media. The VSIE implementation described here
is based on separating the domain of interest into discrete parts
using nonuniform tetrahedral grids. Interfaces are described
using curved or plane triangles. Applying linear nodal elements,
a general 3-D formulation is developed for handling scatter field
contributions in the immediate vicinity of grid nodes, and this
formulation is applicable to all multiregion junctions. The special
case of a smooth interface around a grid node is given naturally
by this formulation. Grid nodes are split into pairs of points for
E-field calculation, and node normals are assigned to these points.
The pairs of points are assigned to the elements adjoining the
grid node. For each pair of points, the correct field jumps on
the interface are given by a surface integral over the polarization
surface charge density.

DISCRETIZATION NOMENCLATURE

As a guide to the reader we have summarized the symbols
and definitions used below.

Q Grid point/grid node: point, where N
surface elements I'® (¢ = 1,...,N)
meet and subdivide 2 or more subre-
gions €1, €2, -+ - (Figs. 4 and 5).
Gurved triangular surface element 2
(Figs. 3 and 4).

Plane triangular surface grid element <
approximating T'(®) (Figs. 3 and 6).
Unit nodal normal on I'® “at” @ (sep-
aration from () infinitesimal) defined in
(14) (Figs. 3 and 4).

Projection of I /A®) on the tangen-
tial plane L n(® (Figs. 6 and 7).
Spherical neighborhood surrounding Q
. with radius 6 (Figs. 4 and 5).

I V5(Q)nT®  (Figs. 3-5).
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r&) T\ (Fig. 5).

P® Reference point generated by splitting
off the grid node ), associated with
r{Y (Fig. 5).

P_(:/)_ Pair of reference points for FE-field

calculation generated by splitting off
P (Fig. 5).

= Used to indicate the integral contribu-
tion of I' or ¥ to Py /.

I. INTRODUCTION

HE recent fast-paced development of computer technol-
ogy now enables the calculation of electromagnetic fields
in complicated three-dimensional (3-D) models. One important
application area for these field calculations is, e.g., hyper-
thermia. In order to determine the temperature in a patient’s
body we need to know the distribution of the absorbed power

+ density, and in biological media this is proportional to the con-

ductivity of the tissue and the square of the contribution made
by the electric field strength. Electrical properties of neighbor-
ing tissue compartments meecting at interfaces can contrast very
strongly (e.g., bone/muscle interface and fat/muscle interface).
This means that to perform these model calculations accurately
enough we must take precise account of local interface details
such as curvature, torsion, etc. Nonsmooth interfaces like
corners and wedges, and points at which three or more
electrically different media meet and where no clear interface
standard is definable, so-called multiregion points, must also
be included in our numerical considerations.

The singular behavior of E-fields near nonsmooth interfaces
(in 2-D TE cases) has already been theoretically described in
[11 and [2]. A similar singular field behavior can be observed
in biological media at multiregion points. These points are a
serious obstacle to numerical hyperthermia-modeling methods,
regardless of whether the integration technique used is local
(finite elements method (FEM), finite-difference time-domain
(FDTD) method, or finite integration technique (FIT) method)
or global (boundary elements method (BEM), or integral
equation (IE) methods). In [3] and [4], elements with special
E-field interpolations were applied to 2-D TE cases in order
to reconstruct the singular field behavior described in [1]
and [2]. As far as the authors are aware, a generalization
relating to the 3-D case has not yet been constructed. An
appropriate way to deal with these singularities may be the use
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of edge elements or combined node/edge elements for the FEM
[5]-[6] in combination with local refinement on tetrahedral
grids; however, these techniques have until now only been
applied to comparatively simple 3-D structures. For realistic
patient modeling, a finite elements (FE) method was described
recently [7] in which the E-field values in critical regions can
be determined indirectly from the calculated potentials or H-
field distribution. This method uses tetrahedral nodal elements.
In the conjugate gradient fast Fourier transformation (CGFFT)
method [8] which solves the volume integral equation (VIE) on
uniform cubic grids, the £-field distribution is also determined
indirectly from the calculated potentials. The recently pre-
sented global multiple multipole (MMP) method {9] achieves
a good accuracy, in particular near boundaries, but it shows
strong practical limitations for scatterers with complicated
angular shapes or inhomogeneous bodies. Finite differences
(FD) and finite integration (FI) techniques for calculating 3-
D field distributions in inhomogeneous media—such as the
FDTD method [10]-[15], and the FIT method {16]-[17]—can
be applied to strongly heterogeneous structures, but they
require uniform cubic grids and show difficulties in modeling
curved or sloped interfaces. As far as the authors know, no
algorithm for nodal elements has yet been described whose
construction takes explicitly into account E-field behavior at
arbitrary 3-D interface combinations. This applies especially
to locations at which a singular E-field behavior is expected.
In [18] we introduced a basis version of an algorithm for
the VSIE method for linear nodal tetrahedral elements with
which explicit E-field modeling has already been performed
on combinations of interface wedges, corners, and multiregion
points. We described there the numerical procedure for forcing
the boundary conditions at interfaces by defining a suitable
polarization surface charge density 7 at the pair of points for
E-field calculation (linking with the normal flux density D,,),
and forming the limes (“self-contribution”) of the strongly
singular integral over 7. In [18] we also performed a code
comparison between the VSIE method and the FIT method
[16]-[17], testing various iterative methods for solving the
linear system of equations given by the VSIE method. The
most effective solver for VSIE proved to be GMRES [19].
While in [18] the treatment of 3-D structures with non-
smooth interfaces was limited to the special case of an
inhomogeneous cylinder, in this paper an improved general
VSIE calculation method is developed using linear nodal
elements for arbitrary 3-D combinations of electrical inter-
faces, including smooth structures, and structures with corners
and/or edges. In contrast o [18], the “special case” of a
smooth interface around a grid node is given naturally and
consistently by this formulation. In order to achieve sufficient
accuracy when determining the F-field in the immediate
proximity of interface elements, the integration is analytically
performed over these elements. During this integration, local
characteristics of the interface are taken into account using
special numerical procedures such as describing F-fields as
their tangential and perpendicular components and splitting
grid nodes. In order to avoid overestimating the influence of
field singularities at nonsmooth interfaces, an optimal grid-
dependent omission radius is estimated for linear interpolations

using local polarization charge shifts (see Appendix). The
plausibility of the estimate is confirmed using suitable numer-
ical energy studies of a layered cube. Further numerical VSIE
results for different geometries can also be found in [20].

II. NUMERICAL METHOD

A. Description of the VSIE Method

1) General Volume Formulation (VIE): For an inhomoge-
neous domain of interest, which is embedded in an unbounded
homogeneous background medium e,, Maxwell’s Equations
can be formulated in terms of the known incident field and
the unknown scattered field

E=FEy+ Egcat (1a)

H:—Hmc_*'Hscat' (1b)

The incident fields Ei,., Hi,. are defined as electromagnetic
fields remaining if the domain of interest is replaced by
the background medium ¢;. Conceptual basis of the integral
equation (IE) formulation is the substitution of the electri-
cal heterogeneities by apparent (or polarization) electric and
magnetic sources radiating into the unbounded background
medium (Fig. 1). These apparent sources generate the scat-
tered fields Focay, Hscar—and the Green’s function of the
background medium ¢, describes their radiation behavior.

We begin with the assumption that within the domain of
interest V', the electromagnetic material properties ¢ and pu
and the fields H and E can all be represented as continuous
local functions (V includes the inhomogeneous boundary layer
between the domain of interest and the background medium).
This allows us to start by giving IE (1a) and (1b) as a general
volume formula without a surface integral (see Problem I in
{21, p. 285]). Cases with discontinuous material properties can
then be processed using suitable interface integrals that can be
derived from the general volume formula [see (10)].

In particular, if a magnetically homogeneous domain is
assumed (constant permeability 4 = pg in biological media!)
the integral equation for E ((1a), see [21, p. 287]) becomes

Byt = _jw/J‘O/ J(’I‘/)g('l‘, T/) d3T/

—/ Vg'r ') d3r’
=T(E) + Tqo(E) 2

where apparent volume current density

I(r') = juw(e(r') — e) E(r') €)
apparent volume charge density
—€p —
') = L (BT e(r') @
scalar Green’s Function of the background medium
1 . ,
— = piklr=r]
g('r )= 47r|'r—'r’|e )
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the gradient of the scalar Green’s function

’ /

Vglr, 1) = e (Gl = 7' + 1) e ()

2L7r|'r ~ 73 .
propagation constant of the background medium

k=w/mos. )

A harmonic time dependence (ej“’t) is assumed. F, J, p, € are
complex quantities (¢ = ege"® — jo/w in biological media).
In contrast to the weakly singular integral T (E), the strongly
singular integral T'2(F) does not disappear in (2) for r — r'
(see (19) in Section HI-C). '
 2) Transition to a Volume-Surface Formulation (VSIE):
Many electromagnetic problems lead to the domain of interest
being split up into electrically homogeneous subdomains ¢;
as shown in Fig. 1. For this type of problems, the value
of grad(e) in (4) is other than zero only inside the thin
inhomogeneous boundary layers between the homogeneous
subdomains and between the subdomains and the background
medium. Thus, the volume integral T'2(E) over thin boundary
layers can be transformed into a surface integral over
interfaces. This change is illustrated for a boundary layer
€1/€2 of thickness 7 (see Fig. 2). The layer is discretized
using differential cubic volume elements of side length
(= 17"')N17 N = T/K/v J= L Ny, NlJ > Np). In
index direction ¢, i.e., perpendicular to the boundary layer,
a linear (and therefore continuous) transition from e; to es
is assumed. In volume element (i, j), the discretization of
(4) gives

o, ) = —61,1 i+ 1) — (i)

@ F e TR ®

In this equation, only the E-field component perpendicular
to the boundary layer, i.e., in direction grad (¢) contributes
to the result. Introducing the interface condition for electrical
flux density €(4)E, (1) = D, foralli =1, ,7/k, we get

p(iy J) = e,,i— : (ﬁ - E(l—i))Dn- ®

As 7 tends towards zero, the boundary layer becomes an

interface I" and T'»(F) becomes a surface integral over I’
— 1 —
lim T3(E) = T»(B) = — / n()Vg(r, r'yd*r’  (10)
T b T .
where (complex) apparent surface charge density is -given by

1 1 —
n= eb(— - —)Dn :6;,61 62Dn.

€2 €1 €1 - €2

(11

Finally, with (10), (1a) and (2) can be formulated as the so
- called volume-surface integral equation (VSIE)
E = T1(E) + T2(E) + Eiq.. (12)

This formulation was used as a basis by Wust er al. in [18].

external impressed sources

Elb

apparent sources

M
J

)

external impressed Subdomains

sources

background

mediume, o hain of interest V

Fig. 1. Induced polarization and homogenization principle for VSIE. The
domain of interest V' consists of sections of homogeneous subdomains ¢; and
is surrounded by a homogeneous unbounded background medium €. In the
domain of interest, €; can be replaced by e, if suitable apparent (polarization)
sources are defined; apparent volume current density J in V', apparent surface
charge density n on the internal interfaces between the subdomains ¢; and on
the outer interface between V' and the background medium. The entire field
problem can be solved using a single Green’s function for the background
medium (homogenization). The total field E is the sum of the known incident
field F;,. and the unknown scattered field Fqcas (generated by apparent
sources) which is linearly dependent on E. In this formulation, the incident
fields are generated by external impressed sources, but a coupling between
sources and the domain of interest can generally also be taken into account
(not shown here).

n €

bl : 12
=Ny € (Ny+1)
EJ' [
T - |=N|/2I £ (N /2)
9 i=1 |
2 T Hem
p('!’) !

Fig. 2, Transition from volume (VIE) to surface (VSIE) formulation for a
boundary layer. A boundary layer of thickness 7 which lies between two
homogeneous subdomains €; and ey is discretized using differential cubic
volume elements (¢, §) of side length «. In the index directioni = 1, .-, 7/«,
i.e., perpendicular to the boundary layer, a-linear (therefore continuous)
transition is assumed between €1 and e3. For 7 — 0, the layer tums into
an interface T’ and the strongly singular volume integral over the apparent
volume charge density becomes a surface integral over the apparent surface
charge density.

B. Discretization Procedure of the VSIE

1) Linear Equation System: The VSIE method can be ap-
plied to any kind of volume or interface elements. However,
to discretize random irregular structures with curved interfaces
(such as tissue compartments in biological media), tetrahedral
grids [22] are the suitable type of grid.
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I%n1

plane triangular
grid element A

Fig. 3. Discretization of interfaces of arbitrary curved geometries. A curved
triangular element I is given by grid nodes ; ( =1, - -, 3). For every grid
node (J; a nodal normal n; with respect to I 1s specified as well as a surface
charge density ;. I' is approximated by the plane triangle A (normal 7).

When generating grid nodes, the first thing to do is mark
on interfaces the multiregion points, wedge points, and corner
points. The interfaces are then discretized by introducing other
grid nodes. The basic type of interface element generated by
doing this is the curved triangular element I" which reproduces
the actual surface almost exactly (Fig. 3). For the numerical
process we also use the plane triangular element A formed
by the same grid nodes as the associated element T'. The
electrically homogeneous subdomains are then filled with
tetrahedrons that make up the volume elements V¥,

We can now discretize the VSIE formulation (12) for the
E-field at reference points k£ = 1,---, Ng

Nr
E® = EF) 13" ABa(TO = PW)
=1

Ny
+ 3 AEa(VY = PR (13)

=1

where N}, is the number of reference points, N the number of
interface elements, and Ny the number of volume elements.
The symbol = is used to indicate the integral contribution of
I or V to a reference point P.

As the scatter contributions A E..+ show linear dependence
on the values of E%), we are provided with a linear system
of N} equations. The associated matrix is full (see [18]).

2) Classification of Interface Elements: In order to par-
tially compensate for this numerical disadvantage we use
sorting methods when calculating the convolution integral
in (12) or the scatter contribution in (13). To this end, the
interface elements are classified with respect to their distance
from the reference grid node Q.

a) Adjoining interface elements (Fig. 4): In order to cal-
culate the scatter contributions to Q we must perform an
analytical integration over curved elements I' which takes
into account details of the local geometry and surface charge
distribution (see Section II-C). Simple numerical integration
methods such as the Gaussian quadrature are not accurate
enough.

b) Interface elements in close proximity: The elements
that lie within close proximity to Q are defined as those
whose separation from Q is not more than six times the
mean element dimension. For these elements it is enough to
perform numerical seven-point integration over plane elements
A with an additional solid angle correction for the normal
contribution (similar to the calculations described in Section
II-C for adjoining elements).

¢) Distant elements: For more distant elements; a one-
point integration in applied.

3) Nodal Normal Definitions: The electrical interfaces are
represented by plane/curved triangles A/T". For many practical
applications these interfaces can be assumed to be smooth,
i.e., the surface normal (and curvature) depends continuously
on position. This continuity no longer exists when a curved
smooth interface at @ is reproduced using plane triangular
elements A® (4 =1,---,N) meeting at (). In this case, the
direction of element normals 'n,X) near @) changes abruptly.
In contrast, if we use an arrangement of curved triangles T'(®)
(4 = 1,---,N) associated with A(®) for the reproduction of
this interface, we can define a common node normal n at
for all cases of I'® (3 = 1,--., N) that adjoin grid node Q
(n can be generated by suitably weighting the surface normals
nX), ¢ = 1,---,N, see below and [23]). Because all r®
(i = 1,---,N) show the same normal n®¥ = n at Q, the
continuity of the interface normals at the grid node Q is
implicitly guaranteed.

If @ represents a corner, wedge, or multiregion point, then
the interfaces are assumed to be smooth in sections. The
interface corner points (such as Q in Fig. 4), wedge points,
and multiregion points are treated using the same numerical
procedure, which can be described as follows.

Let us assume that M smooth interface sections meet at
multiregion point ) (for example, at every corner point of a
cube meet M = 3 smooth interface sections; at every point
on a cube’s edge, M = 2 smooth interface sections meet).
Each interface section m = 1,..-,M can be made up of
N, (curved) triangles that meet at (). This way, we can
generate for each interface section m one node normal n,,
(m=1,---, M) in the immediate vicinity of Q. A tangential
plane is defined perpendicular to each node normal n,, (see
Fig. 6). Following [23], the node normals n,, are defined using
weighted mean values of the surface normals 'n,gf). Mean value
generation is only done using the triangles that go to make up
surface section m at J

_omOray
S A - nf)

oMo (14)

where |A(i)| is the area of the triangle A N, is the number
of interface elements making up a surface section m at Q.
This definition covers the case of the smooth surface at @)
mentioned at the beginning (M = 1, N; = N).

4) Quasi-Static Approximations: To calculate the scatter
field contribution from T'¥) to a reference point P(r) in the
immediate vicinity [in accordance with (13)], we can perform
a quasi-static approximation (k|r — /| < 1) in (6). This
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gives, from (2)

r—r1 2./

AEscat(P( 9= P(r)) = d?r

1 /
) 47!'61,/1-\( i) ’I’)(‘I‘) ) |T—‘I‘I|3

i=1,..-,N. (I5)

This is the basic equation for the analytical integration using
the interface elements (see Section II-C).

C. Integration over Adjoining Interface Elements

For the general case, we assume N curved triangular
elements T® (3 = 1,---, N) of the type shown in Fig. 3,
which meet at a node @ (shown schematically in Fig. 4). Note
that the numerical methods outlined below are valid for smooth
boundaries as well as for corners, wedges, and multiregion
points. For @) we define a §-spherical neighborhood Vs(Q)
with a local radius of 4. This V5(Q)-sphere cuts a circular
segment I‘(’) out of every adjoining interface element T'(¥).
The selected value of ¢ is small enough in relation to the
size of T'® to allow us to assume that I‘( 9 is a small plane
triangular interface element with the surface local normal n(9)
and the local surface charge density value 7@ [see (11) and
(14)]. This implicitly gives § information on the curvature
of the discretized surface, and allows us to estimate § from
the dimensions of the adjoining elements (see Appendix). The
I‘(’)s are used to calculate the singular scatter contributions in
%(Q) In ideal conditions the numerically determined results
should be independent of the specific choice of §(Q). If the
surfaces are smooth enough, thls actually happens, as shown
in Section II-C-4. To every I‘ (k =1,---,N) adjoining the
grid node @, a reference point P(*) is given by shifting Q
an infinitesimally small distance along the line bisecting the
contact. angle of I‘((sk) (Fig. 5). The relation |P*) — Q|| « §
holds with respect to the local radius §. Further splitting of
P®) along the local normal n(®) yields Pj_k/)_ where this shift

- PM || < |P® ~ Q|. Bach
surface charge element T'(¥) contributes a scattered E-field to
P{?_ according to (15). Following [24], this contribution is
separated into a normal component AEE,’grm (parallel to n?)
and a tangential component AEE?. Thus, (15) becomes

A-Escat (F(l) = P:E:k)) .

= ABpoem(T9 = PLY) + AE, (T = P{)
k=1,---,N;i=1,---,N.

is characterised by || P(®*)

(16)

The normal scatter contribution consists of a local term,
which depends on geometric details of I‘(') in relation to
P(k/) and a global term, which reflects the complement I‘(’) .
The latter term is sensitive specifically to the curvature of
the surface element I'(, However it is independent of the
particular (differential) shift of P( = and therefore P( ' can
be substituted by Q.

Now let us outline numemcal calculation of normal contri-

butions of T¥) to the scattered E-field at Pi /-

-which is identical to the normal

Fig. 4. Elements adjoining grid node (. Node normal definitions. An
interface corner point (comparable with a cube vertex) is the meeting place
of three smooth curved interface sections. The sections are separated from
each other by interface edges (thick lines). In this case, each section is made
discrete using two curved triangles I', giving @ six adjoining elements. We
cannot define for Q a unique surface normal. However, for each interface
section we can define a node normal in the direct vicinity of @, giving Q a
total of three nodal normals. The direction of a node normal to a particular
interface section is equivalent to the average of the normals to the plane
triangular elements A (not shown here, see Fig. 3) that represent that section
(in' this case two triangles).

1) Normal Local Contribution: The relationship between a
surface element d2r’ with normal n at v’ and the solid angle
(visual angle) subtended by d%+ at r is given by (see [25])

{n(r) - (r = 1)} - _

P = —dQ(r, 7', n). t=1

-+, N.

an
Since I‘( ) are assumed to be plane, n{r’) is constant for every
I‘(’) Thus, setting n(+') = o (i = 1,-.-,N) in (17) and
subtltutmg (17) mto (15) or (16) the normal contribution of

each I‘g to P* '+ /_ is given by
Bun(0) = L)
©) @ QFED gion (@ . (p — 9/
47r€bn 7 Q sign ('Y - (r—1")) (18)
t=1 '7N7k=17""N, Whefe OSQ(k7z)S2ﬂ'

Fig. 5 shows that (%) is delimited by the vector @— P(*) and
the tangential vectors of the edges of I‘( at Q. Partlcularly
important is that (% is independent of 5. Forr — 7' (ie.,
i = k) we obtain Q4% = 27 In this case
1
AEnorm(Fg(Sk) = P:E:k)) = i——‘"(k)ﬂ(k)

k:]_,...7N

19)
“self-contribution” of a
charged interface and yields the correct jump of the normal
E-field on the interface (see also [18]). The “special case” of
a smooth interface around a grid node is given naturally by
(18), because in this case all (¥ (5 =1,---, N) are identical -
and therefore Q") = ( for all ¢ # k.
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p(k)

p<k>§l_40 IP-R,. <<l @-P[I<<d

pK

<, o (k) ,
ré element i
I‘(k)
>d
element k
Fig. 5. @’s neighborhood. Splitting of grid node @ to process the local

normal scatter field contributions. The reference point P g given by

shifting €2 an infinitesimally small distance along the line bisecting the contact
angle of I‘gk). Further splitting of P along the local normal n(k) yields
the pair of reference points for field determination Pj_k/)_. At every P(¥) a
local charge density (%) as well as local normal n(¥) is specified. While the
local normal self-contribution of the element I'(®) to Pj_k/)_ is proportional

to the solid angle Q(k’k), QR = 27 (here not shown), the local normal
contribution of the contacting surface charge element ) s proportional to
the solid angle (%% and is equal for both points P_E_k/)_. (k29 is delimited
by the vector Q-P) and the tangential vectors of the edges of F(ﬁi) at Q

@'y and £3).

2) Normal Global Contribution: The mnormal contribution
of the curved surface element F(QS is calculated again on the
basis of (15). This contribution is zero for noncurved triangles.
Since 6 3> ||Q — P(*)||, the scatter contribution is independent
of the particular location of Pik/)_. According to Fig. 6, the
solid (visual) angle of 1—‘(;35 as seen from Qq, HQq, I'V),
(Q1 is identical with ) is formed in good approximation
by Q1Q2, @103, 1Q5, Q1Q3 (5,5 are the projections of
(Q2/3 on the tangential plane of '@ at (1 (perpendicular to
ngz) = n® on F((;) at Q1). As another approximation, the
solid angle (@1, T™) can be separated from the integral
and the contributions from 77](7) (3 =1,---,3) can be weighted

according to the curvature (given by the angles 3, see Fig. 6).
Finally we get

AEnorm(F(;Es = Ql)
1 3.

~ O (%) @, @

~ Are, ™ Q(Ql’ r );nj Wy
i=1,---,N (20)
g _ 1L '

n, tangential plane

projected
element ¥

Q(Q4,T)

Fig. 6. Projecting the curved triangular interface element I" onto the tangen-
tial plane defined by the node normal in the immediate vicinity of 1 (see
Figs. 3 and 4). The projected triangle is called W. The curvature-dependent,
global normal scatter field contribution (direction n;) made by the surface
I'ss at Q is proportional to the solid angle (Q1, I') subtended by I'ss
at 1. A good approximation of this solid angle is given by the triangular
sides Q1Q2, Q1@3, Q1Q%, Q1 Q5. When calculating the tangential scatter
field contributions (perpendicular to 1), a good approximation of I" can be
achieved by replacing it with the projection W (assuming that the curvature
is not too large).

wf = 2
385 + 850
(%)
; 2
wgz) _ B31

3(65) + 659

Clearly, the more curved part of 1"(; 5 gives a larger con-
tribution to the normal component. For noncurved interface
elements (' = A = VU in Fig. 6) the solid angle Q(Qq, ')
is zero and consequently the global normal contribution dis-
appears.

The tangential component proves to be nearly independent
of the curvature of the interface around @)1, provided the solid
angles Q(Qy, TW) (i = 1,---,N) are not extremely large,
i.e., the used grid is not too coarse. Therefore, the projection
of I'® into the tangential plane ¥(*) (defined by the normal
n(lz) = n() is employed for numerical calculation (Fig. 6).
No dependence on the specific location of PJ(rk)_ is-seen.

Using Cartesian coordinates in the triangle ¥ according
to Fig. 7 the integral of (15) reduces to

AE, (09 = Q)

1 xz0 + yy°
= Ira [w n(z, y) - 122 dz dy
i=1,---,N. 1)

The tangential scatter contribution is predominantly influenced
by the spatial variation of the charge density distribution,
which is approximately given by linear interpolation

n(z, y) = ax + by + n1. (22)
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Insertion of (22) into (21) yields, first, a nonsingular part from
az + by, which reflects the variation of n(z, y) relative to 7,
and is therefore called here the gradient term.

Second, a singular integral emerges from the constant 7,
which is therefore called here the singular term. Mainly the
near-range part of W around @ affects this integral.

A description of the numerical calculation of both parts of
AE,, is given below.

3) Tangential Gradient Term: The integration over ¥()
with reference to (15) is performed using local Cartesian
coordinates as shown in Fig. 7 defining the line over @1 Q5 as
abscissa (again @1 = (). We have shown the results for the
case 0, < /2 which is typically fulfilled for most of the

triangles in a 3-D tetrahedral grid. In the case of 9(1/2 > /2,
formulas are slightly different (see [26]).

Integrals of (21) are analytical and after some algebra we
obtain

3
(grad) g, (i) _ 1 @ _ . @
AE;V (O = Q1) = 47T€bj§(77j )
@) 2+ (@), 9%} i=1- N @3
where
; h+ H)x
(e =1+ L g gyl
H
~(i-g+f7 @3
) ys + Hay —u— Ho i)k
(st )y = - -(1-g 2f11)q
T3 Hz
+(—H+——Hh2'f11)— (23b)
Cxo q
(@) H 2 (mz 2 )
g =—— - ct+ B2 p2. (23¢)
(e31) a ' y3 \ys ys Ir
’ H H
(), = -=+ (ﬁ —et+ 2, fu)—2 (23d)
c Y3 Y3 q

with the gradients h = y3/zs, ha = ys3/(x2 — x3) as well
as H = 1/h, Hy, = 1/hs the geometrical factors: ¢ =
(1+ha)V2, b =1+h c= (1+H2)1/2 g =1+ H3,
p = (25 +u])V% g = (2325° + yizz*)Y/? and with
logarithmic functions

—In(pvb + 23 — yshs)
Vb

_ In(z2Vh+22)
fr=

In (p/G + ys — z3Hz) — In (22/q + 12 H>)
/i .

The solution is independent of 6.

frr =

549

/

Fig. 7. Definition of the local coordinates (x, y) used for calculating the
tangential scatter field contributions made by a projected triangular interface
element . In order to avoid sign-dependence when integrating in Cartesian
coordinates, the axes x, y perpendicular to ry are selected so that the triangle
¥ lies within the positive region of x and y (always possible for interior
angles §; < 7/2). The x axis runs along the side Q1Q%. The gradient term
is calculated in cartesian coordinates x, y; the calculation of the singular term
is performed using polar coordinates g, ¢ for an equivalent circular segment
with the same interior angle and area as ¥ (radius Leg).

4) Tangential Singular Term: For calculating the second in-
tegral (inserting the constant 7, into (21)), local polar coordi-
nates p,  with respect to Q; are introduced yielding

AE,ESi“g)(\p(’) = Q1)

L

eff 0( Y

~
~

4”% (o=0) Jip=0) "

a: cosgo-l—y sin @ L N. @)

dodp 1=

Here, the projected triangle (%) has been replaced by a disc
segment of apex angle 6, gnd radius L.g with the same area
as the original element ¥ (compare Fig. 7)

G _ 2{\1/(zﬂ_
Leﬁ_‘/ o

For calculating (24), a small disc with radius p = 8., is
omitted around the point ;. Solving the integral in (24) we
obtain

AESi“")(‘P<“=>Q1)z—4—1—{( o) -0 + (o), 4%}
i=1,---,N (25)
where
10
(ag)) —sm(&'(l)) In Eei (25a)
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. , L(i)
(af)y = {1 = cos (")} n (5—H> (25b)

av

For a smooth interface at point Q. ie., M+, -, +0 4,
<o, 400 = 27), the sum of the tangential contributions
(25a) and (25b) originating from the points in the disc is
zero if we integrate all the triangles adjoining point ¢);. Thus,
the singular term is independent of the value of §,,. If the
interface at point 21 is not smooth, the integral contributions
will remain dependent on the exclusion radius 5, . Our reasons
for selecting 6., are explained in detail in the Appendix.

TII. DISCUSSION AND CONCLUSION

We have presented an efficient algorithm using the VSIE
method for 3-D field calculation in electrically inhomogeneous
media which performs explicit E-field calculation (i.e., not
by using the H-field or potential) directly on any electrical
interface combination. The code is working on the basis of
nonuniform nodal linear tetrahedral elements and is capable
of calculating arbitrary inhomogeneous patient models.

In global field calculation methods (JE, BEM), one of which
is the VSIE method, the open radiation conditions are satisfied
in the formulation using the Green’s function of the back-
ground medium. Unlike most local methods (FEM, FDTD,
FIT), only the actual domain of interest must be discretized and
not the surrounding background medium. However, there is the
numerical disadvantage that, because of the global behavior
of Green’s function, the method leads to full linear equation
systems.

The VSIE method is particularly precise in dealing with
electromagnetic fields near the numerically critical multi-
region points without overestimating the F-field singularities
present there. By splitting the integral equation into a volume
and a surface term (VSIE-formulation) we can calculate the
field discontinuities at the places they actually occur, i.e., di-
rectly on the interfaces. To do this we “split” grid nodes on the
interface and treat them as pairs of reference points, allowing
us to explicitly calculate the field on both sides of the interface.
The field values at the two reference points nevertheless
remain related due to the shared value for polarization surface
charge density. The performance of the limes r — ' (“self-
contribution™) of the strongly singular surface integral using
polarization surface charge density allows us to join together
the inhomogeneous regions while satisfying all boundary
conditions (see also [18]). The field contributions are split into
physically distinct tangential and normal contributions in order
to take into account the specific local interface geometry. In
order to avoid overestimating the influence of the singularity,
an optimal grid-dependent omission radius is estimated for
linear interpolations using local polarization charge shifts. The
plausibility of the estimate has been confirmed using energy
studies (see Appendix).

In the VSIE method, a numerical procedure (such as Gauss-
ian quadrature) is not suitable for elements bordering on one
reference point for surface integration. Instead, analytical solu-
tions are locally applied that describe the field behavior more
accurately than numerical methods (even if the local analytical

solutions are of a partially approximative nature (quasi-static
approximation, disregard of curvature in tangential contribu-
tions, etc.) and only allow linear field interpolation). The
reason for this lies in the strongly singular behavior of the
Green’s function gradient. This behavior causes numerical
integration (in which the surface is approximated by a group
of integration points) to be extremely sensitive with regard to
the geometrical location and number of integration points on
the element. Geometrical details such as interface curvature
and position of interface triangles in relation to multiregion
points play a particularly important part in determining the
correct field values on the interfaces (and near the interfaces).
Scatter contributions can be described using suitably defined
solid angles. Here too, it would be very time-consuming to
numerically calculate the field near the interfaces with a similar
accuracy to that achieved using these analytical expressions.

APPENDIX
ESTIMATION OF THE AVERAGE EXCLUSION
RADIUS é FOR LINEAR NODAL ELEMENTS

The singular term for the tangential direction in (25) is
dependent on 4. For a smooth interface at grid node Q, the sum
of the tangential contributions (25a) and (25b) originating from
the points in the disc is zero if we integrate all the triangles
adjoining point Q1. Thus, the singular term is independent of
the value of 8,,. If the interface at point Q1 is not smooth
(multiregion points, points on interface corners and interface
wedges), the integral contributions will remain dependent on
the exclusion radius &,y.

It is therefore important to understand the implications of
the choice of §, For § — 0, the tangential scatter contribution
of each element I'(*) at the reference point would be infinite.
This singularity is caused by the “infinitely sharp edge”
of the abruptly ending surface charge density on I'®. In
order to approximate this singular field behavior by using
the linear interpolations of surface charge density we assume
a “roundness” or “fuzziness” of corners and edges which is
dependent on the problem in hand and whose extent is given by
6. The value of § must be chosen in relation to the size/extent
of the elements; if it is too small 1t will lead to exaggeration
of the singularity (corner, wedge, multiregion point), and if
too large it will give rise to unjustifiable inaccuracy in the
consideration of interfaces (see the numerical energy study
below).

The singularity at (1 can be “naturally” resolved as shown
in Fig. 8 by modifying the linearly interpolated surface charge
density n — 77 by defining ﬁgl) = (. The charge at @}; resulting
from ngl) is apportioned in equal amounts @, /3 and shifted
away from ()i, guaranteeing the conservation of charge

/ n(r’>d2’:/ a(r)d*’  i=1,---,N (26)
o (2) W)

on ¥, Thus: ﬁg?g = 775/)3 +n /2.
Now we assume that the tangential contribution (21) to
Q1 from n®(r') with omission 6(*) should be equal to the
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Fig. 8. An estimate of the optimum exclusion radius § for calculating the
singular tangential contributions on the projected triangle. The singularity at
@1 is resolved by modifying the surface charge density  — 7, if 7, is
defined as 0. In order to guarantee conservation of charge, the charge at Q1
resulting from 7, is split equally between Q'2 5 and shifted away from Q1.
This produces 77, /3 = M2js + 71/2. We can find a value of 6 due to the
assumption that the tangential contribution to Q1 from n(r’) with omission §
(left) should be equal to the tangential contribution from 7(r') to Q1 (right).

tangential contribution from 7 (') to Q (see Fig. 8)

(%)
Leff

—
n(r'\V 9(Q1, r') d*r’
) '
E/ ﬁ(r/)v g(Ql,Tl)dZ‘T'/ i = 15"',N- 27
0

-Equating the coefficients of 7; on both sides gives [see (21)
and (22)]

@Dars ., — @Dasy = (@D)ary

1 i i .
=5 (@R)ary + (o8)apy)  i=10, N (28)

With (23a)—(23d) and (25a) and (25b) we obtain the following
approximation

In (Ldfi>
(%)
(29)

From (28) and (29) we gain (independent of the coordinates
z, Y)

()
_l xS 1 JUON i=1,-

oRE FA0)
_eff
In <6(i)

Therefore, independent of the surface charge

@

057 30)

§D =15, LB j=1,... N
(In the 2-D TE-case, analogously, the quotient of the optimal
“exclusion radius” and of the line element length proves to

be e~2)
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Fig. 9. Arrangement for calculating the E-field inside a two-layered cube.
Outside edge = 1.4142 a, inside edge = 1.4142 b, b = a/2 (2a, 2b:
diagonals in plane of symmetry z = 0). View of symmetry plane z = 0:
the illustration shows half of the interface elements in the fine tetrahedral
grid (24576 tetrahedra). The cube is surrounded by a background medium
(dielectric constant ¢, wave propagation constant k). The incident plane
wave is polarised in the y direction and is propagating in the z direction.
The diagram on the bottom shows the E-field distribution for ¢ = 1, i€,
§ = 8.y (see Fig. 10) along the @ and y axis of the cube. The field maxima
in the plane z = 0 form at the poles T and B of the “inner” cube (medium
electric contrast: €1 /69 = 80; ez/ep = €/eo = 10). The field minima
appear at the side points R and L. The VSIE results correspond qualitatively
to theoretically predicted field behavior from [2]: compare maxima at T/B
with Fig. 2(c) in [2], compare minima at R/L with Fig. 2(g) in [2].

Averaging using all ¢ = 1,..-, N interface elements '® at
()1 gives us an expression for the average exclusion radius 6,y

15 N 0
5av = _]\_T— ‘ zLeﬂ"
j=1

In the following, the selection § = d,, will be also made
plausible by varying § and simultaneously considering the
stored energy and, as additional test,  F-field distribution in
the problem domain V' (Figs. 9-11).

The problem domain V is given by a layered dielectric
cube. Assume a propagation of plane wave parallel to the
diagonal across the plane of symmetry z = 0, as shown in
Fig. 9. The origin is the center of the cube, and points R,
L, T, B are specified. The layered cube is discretized using
tetrahedral grids (coarse and fine grid containing 3072 and
24576 tetrahedra, respectively, see also Fig.'9). The field
behavior on the cube’s plane of symmetry at # = 0 may be
expected to correspond to the field behavior around an infin-
itely long square dielectric cylinder running parallel to z (2-D
TE case). This represents an analogy with test cases in [2],
where the E-field at a 2-D-TE interface wedge is analytically
calculated as a superposition of solutions for an electric and

3D
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Fig. 10. Energy studies for optimum determination of the omission radius
& for calculation of the tangential scatter contributions of triangular interface
elements. The diagram shows the relative stored energy W (q)/1W (g = 1)
in a layered cube for high (e1/ez 78/1, HC curve) and medium
(e1/e2 = 80/10, MC curve) electrical contrasts in relation to the varjation
parameter ¢ = ¢(6) = In (Leg /6)/In (Legr/8av). Sav is the optimum value
of 6 previously theoretically estimated (¢ = 1 for 6 = a.). The graph shows
that the stored energy is at a minimum in the range 0 < ¢ < 2 This range
is studied in more detail in Fig. 11.
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Fig. 11. A comparison between energy values W(q)/W(q = 1) for a coarse

g p gy

{3072 tetrahedra) and fine (24 576 tetrahedra) cube grid, and for high (HC)
and medium (MC) electrical contrast 1n the range 0 < ¢ < 2. The energy
minimum 1s 1n fact located at/near the value ¢ = 1, which has been previously
theoretically estimated, even if deviations arise when determining the energy
minimum because of numerical inaccuracies in integration (field singularities
at corners and wedges), particularly with the coarse grids. The mimimum is
heavily accentuated when the contrast is high. Using a finer grid localizes the
influence of & variations on the field distribution (the global energy curves
become flatter).

a magnetic wall. The local nature of the wedge singularities
in question means that the dimensions of these structures are
small in relation to the incident wavelength. If we study the
VSIE integrals (12) we find that for larger wavelengths the
contribution from the surface integral is dominant. Thus, we
can perform our energy studies with good approximation for
the quasi-static limes case (kb < 1, ka < 1 in Fig. 9)
assuming that the investigated structures are surrounded by an
infinitely large background medium (dielectric constant e).
Furthermore, we assume that the cube’s outer layer has the
same electrical material properties as the background medium
(e2 = €, in Fig. 9). The variation studies are performed for
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two combinations €7 /eo. The dielectric constants are selected
according to the material properties at 90 MHz, assuming zero
conductivity to avoid energy losses and to allow a qualitative
comparison of the E-field distribution with cases presented
in [2]. The first combination ¢;/e; simulates the water/air
boundary with a very high electrical contrast (e1/¢p = 78,
ea/e0 = 1, ie., €1 /e = 78, abbreviation HC); the second
simulates the muscle/fat boundary with a medium electrical
contrast (¢1 /€9 = 80, ea/ep = 10, i.e., €1 /€2 = 8, abbreviation
MC). The abscissas in Fig. 10-11 are labeled with the variation
parameter ¢, ¢ = q(6) = In (Leg/6)In (Leg/bay) (¢ = 1
for § = 6,y). Only the physically practicable values of ¢ are
considered (¢ > 0, ie., § < Leg).

A. Variation Study of Stored Energy and
Qualitative E-Field Comparison

The correct solution in a dielectric problem domain V
should simultaneously show a minimum in stored electric
energy

W:l/qmmv 3)
2 Jy

Varying 6 we can observe (Figs. 10 and 11), that a minimum
in stored energy in fact occurs at ¢ = 1 (i.e., for § = b,,)
as theoretically estimated above, even if deviations arise
when determining the energy minimum because of numerical
inaccuracies in integration (field singularities at corners and
wedges), particularly with the coarse grids. As expected, the
influence of variations in 6 decreases (or becomes more locally
limited) as the grid becomes finer, resulting in the minimum
becoming flatter (Fig. 11).

As additional test, the actual field distribution can be qual-
itatively investigated (e.g., field behavior at wedge points R,
L, B, and T).

An analysis of the qualitative field distribution restricts the
range to 0 < g < 2.2, which in fact includes the value
g = 1 for the optimum omission radius theoretically found
above. Only in this range of ¢ do the physically correct
minima and maxima appear at the wedge points (see the field
distribution for ¢ = 1 in Fig. 9: field minima at R and L
correspond qualitatively to Fig. 2(c) in [2]; field maxima at
B and T, correspond qualitatively to Fig. 2(g) in [2]). In the
range 2.2 < ¢ < 3.5, i.e., when ¢ is reduced further, stored
energy values increase (as shown in Fig. 10). In this range the
calculated field distribution shows maxima at all four wedge
points, which is strongly different from [2] (field distributions
for ¢ # 1 are not shown’in this paper). True, further reduction
of § (3.5 < ¢ < 100) leads to a reduction in energy, but
the field distribution shows minima at all four wedge points,
which does not correspond to [2] neither. For ¢ > 100, i.e.,
8/ Leg — 0. the field strength at all wedge points tends towards
zero, and at the grid points neighboring the wedge points huge
maxima occur that increase as § tends towards zero giving the
increasing values of stored energy. We can therefore conclude
that if 6 is too small, incorrect results will be obtained by the

code.
This model study gives qualitative information about the
influence of variations in ¢ on a physical parameter which
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should be minimal. Keeping in mind that deviations may arise
when determining the energy minimum because of numerical
inaccuracies in integration (field singularities at corners and
-wedges), particularly with the coarse grids, we can certainly
specify a narrow range around the value of ¢ = 1, which is
the value theoretically found above.
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